
REALTIME
REACTIVE

VISUALS

REALTIME REALTIME
REACTIVEREACTIVE

VISUALSVISUALS

MadMapper delivers an intuitive code
editor which allows to make realtime
visuals

Realtime Reactive Visuals - 2

In this tutorial we will see how to make realtime visuals
using MadMapper, like the ones on #1024_Experiments.
We will re-create the visual inspired by Daily Minimal,
n°574.

To achieve this, we will need to create a shader with
parameters and control them with the MIDI protocol.
The music can control and animate the visuals !

1. Introduction

2. Set up

In the code editor, create a new material by click the +
icon. A material is a generative animated visual com-
posed of a fragment shader and a vertex shader. In this
tutorial we will only use the fragment shader.

Select the Empty Template and name your material
whatever you want.

Here the default code should appear in the editor and
your material as been added to your materials in the
right pannel.

Select the input view by clicking the left bar icon, just
below the toolbar. This will allow us to focus only on
our visual.

Realtime Reactive Visuals - 3

A shader is a little program executed by the GPU (Graphic Card).

Here written in GLSL (a programmation language, as part of the OpenGL specifications), it will
allow to determine the final color of each rendered pixel on the screen.

At the start of the code, we can see that part of the text is grayed out and commented (between
the characters /* and /*). This part is a JSON header and can directly influence the MadMapper
interface (adding sliders, checkbox, description, etc.).

Now create a new quad by clicking the square icon on the top left side, the material
should be applied to the surface and appear in the view.
If not, select the quad and right click on your material, then click Apply media to
selected surfaces.

Now you are ready to code your reactive shader !

3. Shader creation

3.1. Understanding header

Realtime Reactive Visuals - 4

The interface of your shader is shown just bellow the
Input Media pannel, we can see the name, credits
and a default speed slider. On the info icon we have
additionnal informations like the description, tags,
path, etc.

Try to modify the credits, descriptions, tags of your
shader, the interface is updated in realtime.

Inputs
The INPUTS fields are the uniforms of your shader. Theses are datas passed from the CPU to
the GPU, they are only read by the shader. They are called uniforms because they have the same
value for every pixel. However they can vary uniformly each frame.

Inputs are composed of a label : the name displayed in the MadMapper interface, a name : the
variable name used in the code, a type, which can be float, bool, int, color, etc.
For more informations on data types, go to https://en.wikipedia.org/wiki/Data_type

Generators
The GENERATOR are objects with parameters. They can store value and their output is a floating
point value. For example the time is a value that we want to get each frame to animate our
shader.

Note that you can access MadMapper Materials Documentation from the Help Menu.

Coding the visual
The final color of each pixels is returned by the materialColorForPixel function. It returns a
vector4 (red, green, blue and alpha channels). Our code will be contained in this function. These
channels are normalized between 0 and 1.

For example, try to put vec4(1, 0, 0, 1) in the final line of your shader, this will display all pixels
red (255 for the red channel, 0 for the others and 100% of opacity).

To reproduce the Daily Minimal visual we need to draw multiple circles and apply them a noise
which is less and less powerful depending on the Y position. Let’s do it !

First, we need to include the MadSDF library to create basics shapes and the MadNoise library to
easily generate a simplex noise.
For more informations on the library, go to https://www.madmapper.com/doc/materials

#include "MadSDF.glsl"
#include "MadNoise.glsl"

3.2. Initialisation

These lines will automatically include the Signed
Distance Field and Noise functions to your shader
codebase.

https://en.wikipedia.org/wiki/Data_type
https://www.madmapper.com/doc/materials

Realtime Reactive Visuals - 5

Then in the materialColorForPixel function add the
background color by creating a vector3 and apply it to
the final color.

After this we need to center the UV.
UV are the coordinates of the current pixel.
In fact, each frame the GPU will execute your shader
on all pixels of the screen and determine their colors.
We will use the position of the pixel in UV coordinates
to draw our shapes.

By default UV are normalized between 0 and 1 but we
will remap their positions between -0.5 and 0.5.

Time to draw our first circle !
First we will define the radius of our circle, here we
will take 0.25.

Then we create the shape of the circle with the circle()
function provided by the MadSDF.glsl library. It takes in
arguments the position of the pixel and the radius of
the circle, things we already have !

After that we need to display our circle to the screen,
good news, the MadSDF.glsl library provide a fill() and
stroke() function. The stroke function takes 4 argu-
ments in this order : the outside color, the border
color, the shape and the stroke thickness.

Now your code should look like this and a white stroked circle should be displayed on a grey
background :

vec3 color = vec3(0.08, 0.08, 0.08);
return vec4(color, 1);

vec2 center = vec2(0.5);
vec2 uv = texCoord – center;

 float circleRadius = 0.25;

float circle = circle(uv, circleRadius);

color = stroke(color, vec3(1), circle, 0.05);

3.3. First circle

 /*{
 	 "CREDIT": "1024 architecture",
 	 "DESCRIPTION": "Inspired by Daily Minimal - NO 574",
 	 "TAGS": "painting",
 	 "VSN": "1.0",
 	 "INPUTS": [
 		 {"LABEL":"Speed", "NAME": "mat_speed", "TYPE": "float", "MIN": 0.0, "MAX": 2.0, "DEFAULT": 1.0 },
],
 	 "GENERATORS": [
 		 {"NAME": "mat_time", "TYPE": "time_base", "PARAMS": {"speed": "mat_speed"} },
],
}*/

#include "MadSDF.glsl"
#include "MadNoise.glsl"

vec4 materialColorForPixel(vec2 texCoord)
{
 	 vec3 color = vec3(0.08, 0.08, 0.08);
 	 vec2 center = vec2(0.5);
	 vec2 uv = texCoord – center;

 	 float circleRadius = 0.25;
 	 float circle = circle(uv, circleRadius);

	 color = stroke(color, vec3(1), circle, 0.05);

	 return vec4(color, 1);
}

Realtime Reactive Visuals - 6

3.4. Adding noise

3.5. Adding more circles

Let's add a noise to our circle.
First we need to add some inputs to change the frequency and the position of our noise, these
sliders will help to refine the values.

Then we need to make a noise gradient, in fact there is less noise at the bottom of the visual
than the top.
To do this we use the smoothstep() function which will ease the noise between 0.3 and 0.7
relative to the Y position of the pixel and the noise position we want.

And then create our noise with the noise() function given by the MadNoise.glsl library which take
a vector3. We multiply this noise by our previous noisePosition variable to get a noise less and
less powerful from top to bottom.

To generate more circles, we will use a for loop.
More informations on the for loop here : https://en.wikipedia.org/wiki/For_loop
We define another input to change the number of circles drawn.

Finally we apply the noise to the circle shape.

{ "LABEL": "Noise/Noise Freq", "NAME": "mat_noiseFrequency", "TYPE": "float", "MIN": 0, "MAX": 10, "DEFAULT": 10 },
{ "LABEL": "Noise/Noise Position", "NAME": "mat_noisePosition", "TYPE": "float", "MIN": 0, "MAX": 1, "DEFAULT": 0.6 },

float noisePosition = smoothstep(0.3, 0.7, -uv.y + mat_noisePosition);

float noiseCircle = noise(vec3(uv * mat_noiseFrequency, mat_time)) * 0.05 * noisePosition;

{ "LABEL": "Circles/Count", "NAME": "mat_circlesCount", "TYPE": "int", "MIN": 1, "MAX": 20, "DEFAULT": 20 },

float circle = circle(uv, circleRadius) + noiseCircle;

We put our code into a for loop, this will create the number of circles defined by
mat_circlesCount :

https://en.wikipedia.org/wiki/For_loop

Realtime Reactive Visuals - 7

for (int i = 0; i < mat_circlesCount; i++) {
 	 float noisePosition = smoothstep(0.3, 0.7, -uv.y + mat_noisePosition);
	 float noiseCircle = noise(vec3(uv * mat_noiseFrequency, mat_time)) * 0.05 * noisePosition;

 	 float circleRadius = 0.25;
 	 float circle = circle(uv, circleRadius) + noiseCircle;

	 color = stroke(color, vec3(1), circle, 0.0006);
}

To finish we just have to offset the noise of each circles by adding the iteration to the time.

And tweak our values like the stroke thickness to 0.0006 for example and play with our Inputs
values. At the end you should have a code similar to this :

And a result which look like this :

Now you're ready to add MIDI controls to your shader by linking the sliders to Ableton Live or
any other MIDI generator application or device.

Thanks for reading, have a good shade !

float noiseCircle = noise(vec3(uv * mat_noiseFrequency, i * 0.1 + mat_time)) * 0.05 * noisePosition;

/*{
 	 "CREDIT": "1024 architecture",
 	 "DESCRIPTION": "Inspired by Daily Minimal - NO 574",
 	 "TAGS": "painting",
 	 "VSN": "1.0",
 	 "INPUTS": [
 		 {"LABEL":"Speed", "NAME": "mat_speed", "TYPE": "float", "MIN": 0.0, "MAX": 2.0, "DEFAULT": 1.0 },
 		 { "LABEL": "Circles/Count", "NAME": "mat_circlesCount", "TYPE": "int", "MIN": 1, "MAX": 20, "DEFAULT": 20 },
 		 { "LABEL": "Noise/Noise Freq", "NAME": "mat_noiseFrequency", "TYPE": "float", "MIN": 0, "MAX": 10, "DEFAULT": 10 },
 		 { "LABEL": "Noise/Noise Position", "NAME": "mat_noisePosition", "TYPE": "float", "MIN": 0, "MAX": 1, "DEFAULT": 0.6 },
],
 	 "GENERATORS": [
 		 {"NAME": "mat_time", "TYPE": "time_base", "PARAMS": {"speed": "mat_speed"} },
],
}*/

#include "MadSDF.glsl"
#include "MadNoise.glsl"

vec4 materialColorForPixel(vec2 texCoord)
{
 	 vec3 color = vec3(0.08, 0.08, 0.08);
 	 vec2 center = vec2(0.5);
 	 vec2 uv = texCoord – center;

	 for (int i = 0; i < mat_circlesCount; i++) {
 		 float noisePosition = smoothstep(0.3, 0.7, -uv.y + mat_noisePosition);
		 float noiseCircle = noise(vec3(uv * mat_noiseFrequency, i * 0.1 + mat_time)) * 0.05 * noisePosition;

 		 float circleRadius = 0.25;
 		 float circle = circle(uv, circleRadius) + noiseCircle;

		 color = stroke(color, vec3(1), circle, 0.0006);
	 }

	 return vec4(color, 1);
}

	1. Introduction
	2. Set up
	3. Shader creation
	3.1. Understanding header
	3.2. Initialisation
	3.3. First circle
	3.4. Adding noise
	3.5. Adding more circles

